Unlocking the Evolutionary Mysteries Of Microbiome-Immune Symbiosis

LIFORNIA IN

ECHNOLOCI

Sarkis K Mazmanian, California Institute of Technology

Bacteria play a critical role in inflammatory bowel disease (IBD)

(ROHN'S DISEASE: inflammation through intestinal wall layers

> Large intestine (colon) \screwn Small intestine

> > lleum

Rectum

Sigmoid colon

SITES OF INFLAMMATION (ROHN'S DISEASE: ileum colon small intestine

ULCERATIVE COLITIS: lower colon rectum

ULCERATIVE COLITIS: inflammation of mucosal layer only Antibiotics ameliorate symptoms in humans and animals
Germ-free animals do no develop IBD in several models

•No definitive pathogens identified

•Immune reactivity to commensal organisms

•Predicted defects in immune regulation

Alterations in the microbiota of IBD patients

The human gastrointestinal tract is populated by both harmful and beneficial bacteria

- •Bacteroides fragilis is a gram-negative, obligate anaerobic bacteria
- •B. fragilis is a prominent mutualist of in the human GI tract,
- •*B. fragilis* synthesizes at least eight unique capsular polysaccharide complexes from distinct genomic loci
- •At least two of these polysaccharides (PSA and PSB) have a novel zwitterionic structure (both a positive and negative charge within each repeating subunit)

PSA protects from chemically induced intestinal inflammation

Mazmanian et al., Nature (2008)

Experimental colitis is driven by inflammatory T-helper cells and prevented regulatory T cells

Neurath, M, Nature Medicine (2007)

PSA mediates the expansion of functionally suppressive CD4+CD25+Foxp3+ Tregs during colitis

PSA directs the development of a specific gene expression profile for inducible Foxp3+ Tregs

Protection from colitis by PSA requires Toll-like receptor 2 signaling

PSA cures established TNBS colitis

PSA is selectively packaged into outer membrane vesicles of *B. fragilis*

B. fragilis

B. fragilis APSA

Yue Shen

PSA is selectively packaged into outer membrane vesicles of *B. fragilis*

B. fragilis

B. fragilis \triangle **PSA**

anti-PSA anti-PSB (kDa) 200 150 100 75 50 -37 ' n' per n' per per W BEA W BEA BEE <u>APSA</u> WT W^C M^N OMV WC OMV wc

Yue Shen

OMVs containing PSA protect animals from colitis

OMVs containing PSA protect animals from colitis

The interactions between harmful and beneficial bacteria may affect health and disease

a Immunological equilibrium

Nature Reviews | Immunology

Helicobacter hepaticus as a model pathobiont

•*Helicobacter hepaticus* is a gram-negative, microaerophilic spiral bacteria that colonizes mice

•*H. hepaticus* does not induce disease in wild-type animals, but upon chronic infection of immunocompromised animals causes intestinal inflammation with similarities to Crohn's disease

Induction of *H. hepaticus* colitis is prevented by PSA treatment

Mazmanian et al., Nature (2008)

PSA of *B. fragilis* prevents pro-inflammatory immune responses in the gut to maintain homeostasis

Nature Reviews | Immunology

The type VI secretion system (T6SS) of Helicobacter hepaticus

The type VI secretion system (T6SS) of Helicobacter hepaticus

H. hepaticus encodes a type VI secretion apparatus

Suerbaum et al. (2003) PNAS. USA 100, 7901-7906

Helicobacter hepaticus enters intestinal epithelial cells

Chow & Mazmanian, Cell Host & Microbe (2010)

T6SS mutants of *Helicobacter hepaticus* display increased association with intestinal epithelial cells

T6SS mutants are increased in animal colonization

No bacteria

WT

H. hepaticus employs the T6SS to suppress immune-related gene expression in epithelial cells

T6SS mutants of *H. hepaticus* induce increased inflammatory markers compared to wild-type bacteria

CD4+ T cells from T6SS mutants of *H. hepaticus* exhibit increased pro-inflammatory responses to intestinal epithelial cell-presented antigens

T6SS balances host colonization and intestinal inflammation

The interactions between harmful and beneficial bacteria may affect health and disease

a Immunological equilibrium

Nature Reviews | Immunology

Potential causes of dysbiosis due to 'western' lifestyles its role in intestinal health and disease

Round & Mazmanian, Nat Rev Immunol (2009)

June Round Yue Shen Janet Chow Yunkyung Lee Sara McBride Melanie Lee Arya Khosravi Vivian Yang Gloria Tran Taren Johnson Rachel Galemidi Haiqing Tang

Talal Chatila (UCLA) Greg Lawson (UCLA) NIH (NIDDK/NIAID)
 Crohn's and Colitis Foundation
 Searle Scholars Program
 Damon Runyon Foundation